
PoorPleb Audit
October 2022

By CoinFabrik

v202209

PoorPleb Audit
October 2022

Executive Summary 3

Methodology 3

Findings 4

Severity Classification 4

Issues Status 5

Critical Severity Issues 5

Medium Severity Issues 5

ME-01 Multiple claimPA() Calls 5

Minor Severity Issues 6

MI-01 No Zero Check 6

MI-02 Phases Overlap 6

MI-03 Solidity Version Pinning 6

Enhancements 7

EN-01 Version Control 7

EN-02 Automated Tests 7

Other Considerations 7

Centralization 8

Upgrades 8

Privileged Roles 8

Contract Phases 8

First Phase 8

Second Phase 8

Minting 9

Construction 9

Claim 9

PA Claim 9

Changelog 9

Page 2 of 9

PoorPleb Audit
October 2022

Executive Summary
CoinFabrik was asked to audit the contracts for the PoorPleb project. No git repository was
provided with the source code.

The scope for this audit includes and is limited to the following file:

● PoorPleb.sol: It contains the PoorPleb contract. It is a standard ERC20 contract
with the extra option to claim tokens for some addresses. Its sha256, calculated
using the sha256sum utility, is
f3cfb4d232154c82008dec2710f9f553f503abbf1416ba1c233d2a7f860ed638.

No other files were audited. Its dependencies are assumed to work according to their
documentation. Also, no tests were reviewed for this audit.

During this audit we found no critical issues, one medium issue and several minor issues.
Also, two enhancements were proposed.

Fixes were published in the https://github.com/PoorPleb/PoorPlebSM.git git repository,
commit a81549c9ef980813178af0fd0115b247a9e80071. All issues were resolved by the
development team. All enhancements were implemented by the development team.

Methodology
CoinFabrik was provided with the source code. Our auditors spent one week auditing the
source code provided, which includes understanding the context of use, analyzing the
boundaries of the expected behavior of each contract and function, understanding the
implementation by the development team (including dependencies beyond the scope to be
audited) and identifying possible situations in which the code allows the caller to reach a
state that exposes some vulnerability. Without being limited to them, the audit process
included the following analyses:

● Arithmetic errors
● Outdated version of Solidity compiler
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters

Page 3 of 9

https://github.com/PoorPleb/PoorPlebSM.git

PoorPleb Audit
October 2022

● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to
comment on every finding and fix the issues they considered convenient. Once fixed and/or
commented, our team ran a second review process to verify that the changes to the code
effectively solve the issues found and do not unintentionally add new ones. This report
includes the final status after the second review.

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

ME-01 Multiple claimPA() Calls Medium Resolved

MI-01 No Zero Check Minor Resolved

MI-02 Phases Overlap Minor Resolved

MI-03 Solidity Version Pinning Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. They must be fixed immediately.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Page 4 of 9

PoorPleb Audit
October 2022

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

Medium Severity Issues

ME-01 Multiple claimPA() Calls
Location:

● PoorPleb.sol: 60-62,66

In the second phase, the claimPA() may be called several times after the owner calls the
setPA() function, minting the PA reward several times to different addresses.

Recommendation
Add an internal boolean variable claimedPA to check if the PA has claimed its reward, set it
to true when the claimPA() function is executed and change the require statement in
line 66 to use it. This change would also allow an executor of the claim() function to run
the claimPA() function.

Status
Resolved. Recommendation followed.

Page 5 of 9

PoorPleb Audit
October 2022

Minor Severity Issues

MI-01 No Zero Check
Location:

● PoorPleb.sol: 60-62,66

The setPA() function does not check if the new account to be set is zero. This may lead to
an invalid PA.

Recommendation
Check that account != 0 before assigning it.

Status
Resolved. Recommendation followed.

MI-02 Phases Overlap
Location:

● PoorPleb.sol: 40,65

If a block happens to have the allowClaimAllDate timestamp, both claim() and
claimPA() will be able to be called, allowing a call to claim() after a call to claimPA().

Recommendation
Change the condition in the require statement in line 65 to block.timestamp >

allowClaimAllDate. Note the lack of “=“.

Status
Resolved. Both checks in claim() and claimPA() were changed to fail if
block.timestamp == allowClaimAllDate. This is not an issue, given that claimPA() can
be called in the next blocks.

MI-03 Solidity Version Pinning
Location:

● PoorPleb.sol: 2

The pragma solidity statement in line 2 allows the PoorPleb contract to be compiled
with newer versions of the solidity compiler. This may introduce unintended bugs when
new compilers are released.

Recommendation
Pin the solidity version in the pragma, not allowing newer compilers.

Page 6 of 9

PoorPleb Audit
October 2022

Status
Resolved. Recommendation followed.

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Version Control Implemented

EN-02 Automated Tests Implemented

EN-01 Version Control
The audited code is not under version control, such as git or mercurial.

Recommendation
Track the versions of the developed code using a version control system.

Status
Implemented. The corrected version is published in
https://github.com/PoorPleb/PoorPlebSM.git, commit
a81549c9ef980813178af0fd0115b247a9e80071.

EN-02 Automated Tests
While the development team provided us with some automated tests for the PoorPleb

contract, they do not run properly.

Recommendation
Fix the tests and check that they have the proper coverage.

Status
Implemented. Tests in the corrected version pass.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Page 7 of 9

https://github.com/PoorPleb/PoorPlebSM.git

PoorPleb Audit
October 2022

Centralization
The pleb address (PA in the source code) can be set by the contract owner multiple times.
The development team informed us that they intend to renounce the ownership of the
contract as soon as the contract is launched.

Upgrades
The audited contract cannot be upgraded.

Privileged Roles
These are the privileged roles that we identified on the PoorPleb contract.

Owner
The address with the owner role can set the pleb address (PA). Also, given that the contract
is a standard OpenZeppelin Ownable, it can transfer the ownership to a different address or
renounce its ownership, effectively making the contract ownerless. It must be noted that the
development team informed us that they intend to run with no admin keys, so they will
renounce the contract ownership as soon as the contract is launched.

PA
Any address can call the claimPA() function after 69 days. When this function is called,
the address with the PA role will get N * 420_369.0 tokens, where N is the number of
addresses that successfully called the claim() function during the first phase.

Contract Phases
The PoorPleb contract has two different phases.

First Phase
The first phase happens for the first 69 days. During that phase, any address that can
provide a proof to the claim() function will be awarded 1420369 tokens. Each address
may do the claim once in this phase

Second Phase
After those 69 days:

● addresses can no longer claim their rewards using the claim() function.
● any address can call the claimPA() function, awarding the PA N * 420_369.0

tokens to the PA. And addresses

Page 8 of 9

PoorPleb Audit
October 2022

Minting
PP tokens are minted in 3 different situations.

Construction
When the PoorPleb contract is deployed, 1_666_725_026_387.72 tokens are minted and
assigned to the deployer address. Those 1_666_725_026_387.72 tokens correspond to
over 1_100_000 claims.

Claim
During the first phase, when an address successfully calls the claim() function,
1_420_369.0 tokens are minted and awarded to the caller of the function.

PA Claim
During the second phase, on a successful call of the claimPA() function, N * 420_369.0 are
minted and awarded to the pleb address. N is the number of addresses that successfully
called the claim() function in the first phase.

Changelog
● 2022-10-11 – Initial report.
● 2022-10-17 – Check fixes in commit

a81549c9ef980813178af0fd0115b247a9e80071.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the PoorPlebs project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 9 of 9

